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TIMES MEASUREMENTS BASED ON QUANTUM 
PHENOMENA: LIFETIME OF A QUANTUM LEVEL 
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Abstract. The end of the twentieth century saw a great change of the ideas about the units and the standards of measurement. 
The system based on mechanical standards such as the standard meter of Sevres is replaced by another system based on 
atomic phenomena, thus quantum, such as a wavelength of light. The new system is now internationally admitted by 
definitions of the meter based over a wavelength of light of krypton and second based on a hyperfine transition from cesium. 
The advantages of the new system are partly of conceptual nature, but mainly they are definitely more practical since the 
new standards are more generally available and allow more precise and more convenient measurements in science and 
technology. The possibilities of the new approach to metrology go much further those measures of length and time. One will 
present the methods of calculating of the life time associated with an electron in quantum states and electronic quantum 
transitions between the levels. For the knowledge of the electronic structure of atoms and ions the gas phase is the state 
which presents the least difficulty. For this physical state, the parameter to be calculated is chiefly the radiation force S. The 
adjustment of gaseous lasers, for instance, requires rather the values of the transition probability calculated per unit time. 
For the radiation force and for the probability of transition the introduction of a dimensionless parameter called oscillator 
force is expedient. It carries information leading to the comparison between the transition of absorption and emission within 
the same electronic structure. This evaluation is less easy in the condensed state be it solid or liquid. Here the notion of the 
oscillator force is essential. For the solid state of matter, by the use of the specter an “experimental” force of oscillation can 
be estimated. Moreover the symmetry of the site within the crystal must be well known, so as to be able to take into account 
the effects of the crystalline field. 
 
Key words: force of oscillator; radiation force;“3j” symbols; Ck coefficients; Clebsch-Gordan coefficients; Einstein 

coefficients; transition probability by time unit. 
 
Rezumat. Sfârşitul secolului douăzeci a fost martorul unor schimbări majore în ce priveşte unităţile de măsură şi etaloanele. 
Sistemul bazat pe etaloane mecanice cum ar fi metrul etalon de la Sèvres este înlocuit cu un alt sistem bazat pe fenomene 
atomice, deci cuantic, cum ar fi lungimea de undă a radiaţiei luminoase. Noul sistem este în prezent recunoscut internaţional 
prin definiţiile pentru metru, bazată pe lungimea de undă a radiaţiei kryptonului, şi pentru secundă, bazată pe o tranziţie 
hiperfină a cesiului. Avantajele noului sistem sunt în parte de natură conceptuală dar ce este mai important este că aceste 
definiţii sunt în mod clar mai practice pentru că noile etaloane sunt mai larg accesibile şi permit măsurări mai convenabile 
pentru ştiinţă şi tehnologie. Posibilităţile noii abordări din metrologie merg însă mai departe decât aceste măsurări de 
lungimi şi de timp. Se vor astfel prezenta metode de calcul pentru timpul de viaţă asociat unui electron aflat într-o stare 
cuantică şi tranziţii electronice cuantice între două nivele.Pentru cunoaşterea structurii electronice a atomilor şi ionilor, 
faza gazoasă este cea care prezintă cea mai mica dificultate. Pentru aceasta stare fizică, parametrul care trebuie în primul 
rând calculat este forţa de radiaţie S. Reglarea laserilor gazoşi, de exemplu, necesită în primul rând valorile probabilităţii 
de tranziţie calculată pentru unitatea de timp. Pentru forţa de radiaţie şi pentru probabilitatea de tranziţie este avantajoasă 
introducerea unui parametru adimensional numit forţă a oscilatorului. Acesta conţine informaţii care conduc la compararea 
dintre tranziţia de absorbţie şi de emisie în cadrul aceleiaşi structuri electronice. Această evaluare nu mai este la fel de 
uşoară în starea condensată fie aceasta solidă sau lichidă. În cazul acesta noţiunea de forţă a oscilatorului este 
esenţială. Pentru starea solidă de agregare, folosind spectrul, se poate estima o forţă “experimentală” de oscilaţie. Mai 
mult, simetria locului din cristal trebuie să fie binecunoscută, astfel încât să poată fi luate în considerare efectele 
câmpului cristalin. 
 
Cuvinte cheie: forţă a oscilatorului; forţă de radiaţie; simboluri “3j”; coeficienţi Ck; coeficienţi Clebsch-Gordan; coeficienţi 

Einstein; probabilitate de tranziţie în unitatea de timp.  
 

TRANSITION 1s <-> 2p OF THE 
HYDROGEN ATOM. FORCE OF 
OSCILLATOR AND RADIATION FORCE  

Let us choose a simple case: the transition 1s 
<-> 2p of the Hydrogen atom (considered as a 
very rarified gaseous system). This transition is 
observed at 1216,68 Å (Å = Angstrom). 

A quantum transition (absorption or 
emission) between two electronic states is 

represented by the following scheme: 
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The force of oscillator f(ba) of the transition 
in absorption of a  toward b  is bound to 
the S(ba) “radiation force” through the relation: 
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In this relation m0 is the true mass of the 
electron,  is the rationalized Planck constant 
(h divided by 2π), and e0 is the normalized 
charge of the electron (elementary charge of 
the electron divided by 04πε ). 

S(ba) does not depend from the direction 
that the transition takes, i.e. absorption or 
emission:  
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αa and αb are supplementary quantum 
numbers which describe more accurately the 
states a  and b  ; Ja, Jb and Ma, Mb are 
respectively the total angular moments and 
the quantum numbers of “projection” 
connected with J. 

R is here an operator which represents the 
position vector and corresponds to the median 
distance of the electron "i" (the one which 
causes the transition) to the nucleus. For an 
atom with N electrons we can write R = 

1

1ˆ ˆ
N

i
i

R r
N =

= ⋅∑ . For the Hydrogen atom with 

only one electron R = r (represented by r̂ ).  
In an absorption of level a  toward the 

level b , the radiation force is bound to the 
Einstein coefficient the following relation: 
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In an emission from level b  to the level 
a  the radiation force S(ba) and the Einstein 

coefficient A(ab) are related by: 
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; c ≈ 3⋅108 m⋅s−1.  

Since ω = 
2 cπ
λ
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; then: 
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The units S.I. − u.s.i. (S.I. = international 
units) of the radiation force S(ab) are the units 

of the product e0
2× a0

2. In the S.I. system the 
factor e0

2 represents the squared elementary 

charge (e2) divided by4πε0 (
0

1
4πε

≈ 9×109 

F−1⋅m). The calculation of the element of the 
matrix involves as well the square of the 
radius of the first Bohr orbit a0. Therefore 
with the usual values for the elementary 
charge and the radius of the first Bohr orbit, 
we can calculate: 
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(Joule × meter3). 

If we wish to express λ in Å, knowing that 
 ≈ ≈ 1,054×10-34 u.s.i., the Einstein coefficient 

must be written in the form: 
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This coefficient has a dimension, which cor-
responds to the inverse of a time (s−1). 

The calculation of the radiation force S(ab) 
for the Hydrogen atom gives: 

(R → r̂ ) ⇒ 

⇒ ( )
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For this type of calculation the vector r is 
easier to express on the basis of spherical 
harmonics i.e.: 
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the following calculations r is usually written: 
r=r . 

In the case of emission this calculation is 
written by the use of the single-electronic 
states Φi:  
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A single-electronic state Φi is expressed as the 
product between a radial factor and an angular 
factor depending from θ and from ϕ. The vector 
r is expressed in function of r .YLM. 

Let us consider the quantity ' ' 'n l m  for 

the function 2p and n l m for the function 

1s. The separation of the radial parts from the 
angular parts then given: 

2 1ˆ ˆ' ' 'p sr n l m r nlmΦ Φ =  = 

2 1 ' 'p s LMP r P l m Y lm⋅ . 

Considering first the radial parts: 
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The integrals of the kind ( )
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α +=  were used above. 

In the case considered above n = 4 and 
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a⋅ . Therefore in the 

calculation of the radiation force, the 
squared norm of the radial part is: 
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For the angular parts, the calculation is: 
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The angular integrals are calculated in 
several different ways: with the “3j” symbols; 
with the coefficients Ck or with the 
Clebsch-Gordan coefficients.  

“3j” SYMBOLS 

The “3j” symbols (see Rotenberg’s tables) 
correspond to the coupling of 3 angular 
moments (two moments in relation to the third)  
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The calculations yield results different from 
zero, if the rule of triangulation is satisfied. 
First - m' + M + m must be 0, therefore M = 
= m' − m and secondly the sum l' + L + l 
must be one even whole number. For a dipolar 
electrical transition, the expression of "r" in 
spherical harmonics, L=1 is obligatory. 

Ck COEFFICIENTS  

The Ck coefficients correspond directly to 
the integrals of our research: 
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Another condition is that: ( ); ' 'kC lm l m =  
( ) ( )'1 ' ';m m kC l m lm−= − . 
For the spherical of harmonics Φ2p we have 

l' = 1 and m' = + 1, 0, - 1. The Ylm to be 
considered are therefore Y11, Y10 and Y1−1.  

For Φ1s : l = 0 and m = 0, therefore the 
only possibility for Ylm is Y00. 

In applying the rules of triangulation: 
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Finally, the calculation of the value of (r)2 
between 1s and 2p yields: 
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For the radial parts, the integral intervenes 
for one value only. Each one of the three 
integrals for the angular parts represents one 
possibility of absorption, according to the 
polarization of the photons (according to x, y, 
or z).  

This is the reason for using the symbol 

a bM M
∑ .  

Let us recall that: 
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The sum of these three possibilities corres-
ponding to the three integrals is 1/3+1/3+1/3= 
= 1.  

The radiation force of the transition 1s → 2p 
is thus obtained:  
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CLEBSCH-GORDAN COEFFICIENTS 

The Clebsch-Gordan coefficients are related 
the symbols "3j" by the following relation: 
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The “j” and “m” act as j3 and m3 in the 
general expression of the symbol “3j”. The 
tables of the Clebsch-Gordan coefficients show: 
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Therefore the first symbol “3j” calculated 
above could be obtained also by the use of the 
Clebsch-Gordan coefficients: 
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EINSTEIN COEFFICIENTS 

In an emission type transition b → a the 
radiatif lifetime τ of the starting level b is 

defined as the inverse of the Einstein coef-
ficient A(ab). The transition 1s ↔ 2p of 
Hydrogen la observed at λ = 1216,68 Å and 
the initial level 2p, as p type orbital has a 
degeneration which value is 3; therefore  
g2p = 3. 

In this case the Einstein coefficient at the 
spontaneous emission can be calculated: 
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From the coefficient A(ls 2p), we obtain the 
lifetime of the level 2p : ] 
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From the knowledge of the radiation force 
S(ls→2p) = S(2p→1s) the force of oscillation at the 
absorption f(2p1s) can be obtained directly. For 
this, the same method will be used as 
previously in expressing the constant factors of 
the general formula in the S.I. system, 
retaining only the variable λ and g in the final 
expression. Taking into account the product 
e0

2×a2
0 (unit of S(ba)), we obtain: 
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(in 2 2
0 0e a⋅  units). 

For the Hydrogen atom, this corresponds to 
the absorption of level ls towards 2p: 
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.  

In the transition 1s→2p, as the 1s level is 
not degenerated, we have g1s=1 and λ2p←1s = 
= 1216,68 Å.  

Under these conditions at the absorption 
the oscillator force f(2p1s) equals ≈ 0,416.  

That the force of oscillator “f” has no 
dimension is then easily verified. From this 
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value the force of oscillator at emission can 
also be extracted by the use of the relation: 
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The emission is on the sign contrary to the 
absorption that is considered positive.  

The radiation force enables also to calculate 
the Einstein coefficient in absorption: 
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Therefore for the transition ls → 2p the 
Einstein coefficients is: 
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The coefficient of spontaneous emission is 
expressed in second−l. The coefficient 
characteristic of absorption is in m3 × J-1× s-2. 
In fact the very notion of absorption implies 
that the system on which the experiment is 
carried out is subjected to a photons sheaf of 
monochromatic light. 

This sheaf yields at the level of the sample a 
constant stream of photons of a fixed 
frequency. These conditions led us to introduce 
the quantity Uωdω (spectral density of energy). 

Uωdω represents the energy of n photons 
(individual energy ε = ω) by unit of volume 
and in the intervals from ω to ω+dω:  
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The energy by volume unit is sometimes 
defined in frequency ν  and not in pulsation ω. 
As ω = 2πν and Uω dω = Uν dν the 
expressions Uω and Uν are related by Uω = 
= Uν/2π. The expressions that bind the 
coefficients are: 
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Therefore by returning to the previous 

calculation : 
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For the dimensions, the product corres-
ponds then: 
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The product B(ba) × Uω has as A(ab) the 
dimension of the inverse of time.  

For the Hydrogen atom with λ = 1216,18 Å 
the calculations lead to:  
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The Einstein coefficient of stimulated ab-
sorption × Uω gives: 
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Without special difficulty the same value 
of the force of oscillation in absorption is 
obtained, it the relation that expresses this 
force as a function of the Einstein coefficient 
is used. 

For tile transition 1s → 2p with λ = 
= 1216,18 Å, it gives f(2p, 1s) = 0,415. 

The “details” of the calculation are as 
follows: 
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As for the forces of oscillators, the level’s 
degenerate relates the Einstein coefficients to 
each other. The Einstein coefficients can then 
be calculated in stimulated emission by the 
knowledge of the one in absorption. Thus:  



Cristian FLOREA 

  METROLOGIE     1/2008 22

]ga × B(ba) = gb × B(ab). In the case under study, 
this gives:  

g1s × B(2p, 1s) = g2p × B(ls, 2p) ⇒ 

⇒1 × 1,26 × 1021 = 3 × B(ls, 2p). 

Finally we obtain B(ls, 2p) = 0,42. 1021 m3 × 
×J-1× s-2. 

PROBABILITY OF TRANSITION  
BY TIME UNIT 

Beside the forces of oscillators and the 
Einstein coefficient, we have a third method of 
writing the equation of these phenomena. It con-
sists in formulating them in term of probability 
of transition by time unit. This method is easier 
when a balance sheet is required. This balance 
sheet is drawn between the energy that enters in 
the system at absorption and that leaves it at 
emission, no matter whether it takes place in the 
spontaneous or stimulated form. 

The formulae for the probability of 
spontaneous emission generalize those of the 
coefficients: 

( )
( ) ( )

3

3

4
3

a b a b
spont a b ba

b

W A S
c g
ω← ←

←= = ⋅
⋅ ⋅=

.  

We have therefore:  
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3
1 21 2

1 2 2 13
2

8 1

4
3

 6,25 10

s ps p
spont s p p s

p
W A S

c g

s

←←
←

−

ω
= = ⋅ ≈

⋅ ⋅

≈ ⋅

. 

Likewise for the probabilities of stimulated 
absorption and emission: 

( ) ( )
( ) ( )

3

3

4
3

b a b a
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a

n
W W B U S
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In fact:  
( ) ( )

( )
2 1 2 1

2 1

7 14,66 10

p s p s
abs stim p sW W B U

n s

ω
← ←

−

= = ⋅ =
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Let us consider the relations:  
( ) ( )

( ) ( )

b a b a
abs a stim a

a b a b
abs b stim b

W g W g

W g W g

← ←

← ←

⋅ = ⋅ =

= ⋅ = ⋅
. 

In the case 1s→2p this gives: 
( ) ( )

( ) ( )
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W W
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