MEASUREMENT OF THE ELECTRIC ENERGY QUALITY IN ELECTRICAL STATIONS

Gabriel VLADU*, Mircea DOBRICEANU**, Marius FETOIU*, Camelia COJOCARU*

* IPA, CRAIOVA SUBSIDIARY, AUTOMATION ENGINEERING INSTITUT, CRAIOVA, ROMANIA
** UNIVERSITY OF CRAIOVA, ELECTROMECHANICAL ENGINEERING FACULTY, CRAIOVA, ROMANIA

1. INTRODUCTION

When it is analyzed the efficiency of a production process there appears the problem of the consumption of the electrical energy which represents a vital source for each factory. A sustained activity for maintaining the internal electrical energy consumptions at reduced levels explains the worries of many managers regarding the way in which the electrical energy is consumed inside the factory they run.

The recent implementations based on power electronics provide a lot of advantages related to the designing of some high power electrical drives with variable speed, such as the increase of driving system performances. Unfortunately this kind of equipment added new quality problems to the existing ones. The new problems are related to the electric nature waveforms distortions, with direct impact over the consumers supplying.

The energetic effects that affect the electric energy quality must be precisely evaluated in order to their consecutive limitation. The quality parameters measurement is related to the existing voltage level, to the data acquisition time speed, to the employed numeric algorithms. Test and isolated implementations were recently performed in our country and abroad, but none became a market leader.

The measures taken into consideration included the implementation of a monitoring and control system of the energetic installation, with the purpose of automat supervision of the electrical energy consumed capable to issue the necessary information for the reduction of the energy and installation’s automation costs.

The monitoring system for the electrical parameters is designed to go on two main directions:

- The acquisition of the characteristic parameters of the electrical station (voltages, currents, powers, auxiliary contacts of the switching elements), processing these parameters and sending them to a superior level (dispatcher) through a physical data transmission medium. The taken
signals are used for permanent monitoring of the functioning of the electrical distribution station.

- Synchronous acquisition, on a determined period of time, of a set of characteristic parameters of the transient regime when an error occurs in the monitored electrical station. The set of data stored during the error period is then sent to a computer where the interpretation of data is done by the help of a dedicated program.

2. THE MONITORING SYSTEM; ARCHITECTURE

To accomplish the two main directions, there was designed a complex data acquisition, data sending and receiving system [5], [7], [8], which has the block diagram presented in Fig.1.

The system functions must provide:

- determination of electric energy quality parameters that should consequently result in measures for improving of qualitative and quantitative efficiency of energetic consumptions;
- events recording, in order to detect the faults causes and the repeated connections and disconnections over electric lines.
- permanent and real time visualization of the characteristic measures for the electrical station (currents, voltages, powers, energy, power factors, auxiliary contacts);
- visual and sound alarm in case of outrunning pre-established range for any of the monitored measures;
- visual and sound alarm in case any equipment faults (fails of communication lines, fails of data collecting equipments, etc.);
- recording information into a database (dispatcher), assuring the possibility to process data on the network server computer or on any workstation connected to the network;
- graphical display of the measures taken from the process, on time periods defined by the users;
- printing of consumption diagrams and specific diagrams on time periods defined by the user;
- interconnection into a computer network;
- data transfer to a central dispatcher.

2.1. Processing, storing and data displaying subsystem

This subsystem is composed of an IBM–PC computer and the software which allows storing, processing, displaying and printing data taken from a maximum number of 255 local data acquisition equipments (LDAqE) from electrical cells. The computer is integrated in a LAN at the dispatcher level, allowing data access to authorized users.

2.2. Data communication subsystem

This subsystem is composed of equipments for connecting to the optical fiber environment (equipment at the dispatcher’s level and equipment for each of the electrical cell from the perimeter of the supervised station) which assure communication at high speed and high security between the data processing subsystem and the local data acquisition equipments. The proposed subsystem is immune to the electromagnetic interferences and assures galvanic isolation.

2.3. Local data acquisition equipments; synchronization subsystem

This subsystem is composed of dedicated equipments at the level of each electrical cell and assures the synchronization of all the local data acquisition equipments from the respective electrical station after the universal time taken by the means of a local antenna and the GPS modules from the satellites. By mounting these equipments there is assured the synchronous data take over at the level of each cell from the respective electrical house, and also at the level of the electrical station. This fact is useful for the analysis of the data acquisitioned, allowing the user to supervise the propagation of a flaw at the station level and also at the level of the electrical distribution system.

3. QUALITY OF THE ELECTRIC ENERGY SUBSYSTEM. TECHNICAL FEATURES

The equipment for analyse of parameters for quality of the electric energy assure:

- Number of monitored and evaluated lines: 3 voltages and 3 currents;
- Tests accuracy:
 - U, I...........0,5%
 - P, Q, S, D…1%
 - Frequency…0,05%
 - Active/reactive energy according class 2 IEC1268
 - Distortion coefficient I/U…2%
 - Storing capacity: 256 KO ... 8MO;
- Period of recording: 3 sec - 12 min, equivalent of maximum 240 events, each of 3 seconds; the records are non volatile;
- Supplying: 230 V c.a / 50 Hz; -15% ... +15%; and battery 12V.
3.1. Standards utilised

PE 143/94, En 61010 cat.III, IEC 60664, VDE 0110, UL 94, EN 60801, EN 50081-1, EN 50082-1, EN 61000-4-15, ANSI-IEEE 519, CEI 1000-2-4.

3.2. Functions

Data determination for currents and voltage of phases and neutral wire;
► The input voltages are delivered either by potential transformer with a nominal value of 100 V a.c., or by transducers with instantaneous values;
► The input currents are got either from current transformer with nominal value of 1 A a.c. or 5 A a.c., either with transducers with instantaneous values;
► Calculation of energies, of active/reactive/apparent / distortion powers, of power factor, frequency, coefficient of total harmonic distortion for voltages or currents (UTHD, ITHD);
► Measurement of analogical values separately for each phase (effective values, initial phases of voltages and currents’ harmonics, spectral analysis);
► Visualisation of time fluctuation for current, voltage, energy, active/reactive/distortion power, condition of contacts from distribution station;
► Analysis and determination of the following parameters in 3-phase network:
 ➢ impedance of phases and neutral wire;
 ➢ active/reactive/distortion power;
 ➢ direct/inverse/homopolar components of non-symmetrical systems for voltages and currents;
 ➢ distance calculation till the damage place, detection and analysis of damage and events’ causes, including the monitoring of production relays;
 ➢ setting of operation mode for the supervised element (loaded regime, idling, lack of voltage, short circuit type etc.).

4. DATA PROCESSING SOFTWARE

At the dispatcher’s computer [8] level there is implemented a program which can assure the supervision of the functioning of all cells from an electrical distribution station and which can take over, process and display data regarding a flaw, from any of the local data acquisition equipments mounted in the supervised electrical station. The program offers the user many windows which will be presented in the following:

► When the program runs on the computer’s display, there appears a window, presented in Fig. 2, that displays the electrical scheme with the corresponding state (on-off) of the switching elements (switches, connection to ground separators, etc.). This window displays the values of the currents, voltages and powers corresponding to each supply or output line from the station. So for the electrical supply lines LEA1 and LEA2 there are displayed the values for the supply voltage (at the level of the measurement transformer from the respective line), of the current and of the instantaneous power consumed on the side of the cells leaving the station. At the level of each cell there are displayed the instantaneous values of the current and of the power consumed on the respective leaving line, and the value of the supply voltage is displayed at the level of the measuring voltage cell for each group of line cells. To each switch of each line cell there is a button C1…C7.

► When a mouse click is done on any of the C1…C7 buttons on the screen there will automatically appear a new window, presented in Fig. 3, which describes the selected cell with all the signals taken from the local data acquisition equipment mounted in this cell. There are presented all three supply lines L1, L2, L3 from the respective electrical cell, with the three-phased separator Q1.2, the supply switcher of the respective line Q0.2, and the connect to ground separator Q8.2, in which all are in on state represented by the blue color of the mobile contacts. Another group of information taken from local data acquisition equipment is presented in the screen’s right side like rectangular LEDs which describe the state of the contacts taken through digital inputs. On the screen there are displayed all of the energetic values: information regarding the supply voltages of the respective cell, the powers and values for the active energy Wp and for the reactive energy Wq consumed on that line until that moment, and continuously there is displayed the value of the frequency for the supply voltage on the respective line. We can access the domain configuration window, presented in Fig. 4.
Fig. 1. The block diagram of the monitoring system

Fig. 2. The electrical scheme of the monitored station.
Fig. 3. The scheme corresponding to CELULA 2.

Fig. 4. Window for input domains’ state: voltage and current.
Fig. 5. The voltages and currents’ evolution on three phases for the case in which a flaw of short-circuit type occurs on the supply line.

Fig. 6. The mixed voltages and currents’ evolution on three phases for the case in which a flaw of short-circuit type occurs on the supply line.
5. DIAGRAMS OBTAINED EXPERIMENTALLY USING LOCAL DATA ACQUISITION EQUIPMENT – LDAqE

In Fig. 5, 6 and 7 there are shown the diagrams obtained for the case in which a flaw of short-circuit type occurs on the supply line, [3]:
- current on phase rises 40 times over the nominal value;
- voltages on each phase lower by 20%;
- the time in which the protection starts is approximate 80 ms compared to the moment of the occurrence of the flaw.

6. CONCLUSION

► The local equipment for energetic data acquisition (LDAqE) is a component element of a complex supervision system for the electrical energetic flow which is implemented in an electrical station from Craiova.
► The system offers the possibility of real-time monitoring of the electrical measures, energetic consumptions on the supply lines, total station and also flaws monitoring.
► Through the possibilities that it offers, the system can work interconnected with other monitoring systems and also with other computational systems in the network, allowing this way access to information, at different decisional levels.

REFERENCES

MEASUREMENT OF THE ELECTRIC ENERGY QUALITY IN ELECTRICAL STATIONS

Despre autorii:
Gabriel - Cătălin VLĂDУŢ: cercetător științific gr. II, specializat Automatizări industriale și sisteme SCADA, Director S.C. IPA S.A., CIFATT – Craiova, Președinte ARIES, filiala Oltenia. E-mail: office@ipacv.ro.
Mircia DOBRIČEANU, conferențiar universitar, doctor inginer, Universitatea din Craiova, specializat Automatizări industriale, sisteme SCADA, sistem control de date, echipamente electrice pentru CE. E-mail: mdobriceanu@em.ucv.ro.
Marius FEŢOIU, inginer, cercetător științific IPA Craiova, specializat Automatizări industriale, sisteme SCADA, PLC, software aplicativ, mențenanță predictivă, sisteme achiziții și transmisii de date, echipamente electrice pentru CE. E-mail: marius.fetoiu@ipacv.ro.
Camelia COJOCARU, inginer, cercetător științific IPA Craiova, responsabil asigurarea calității, experiență proiecte naționale și internaționale complexe, sisteme achiziții și prelucrare a datelor. E-mail: camelia.cojocaru@ipacv.ro

Revizia științifică a articolului:
Florin TĂNĂSESCU: profesor, doctor inginer, secretar general al Academiei de Științe Tehnice din România. E-mail: comisia6@icepe.ro.
Cristian FLOREA: profesor universitar, doctor inginer, la Groupe Ecole Supérieure en Electronique et Electrotechnique, Paris. E-mail: c.florea@esiee.fr.

REGULI DE PREZENTARE A ARTICOLELOR
PENTRU REVISTA „METROLOGIE”

PRECIZĂRI GENERALE

• Lucrările trimise spre publicare trebuie să reprezinte contribuții originale ale autorului. Responsabilitatea pentru exactitatea afirmațiilor științifice, a calculurilor și a rezultatelor experimentale prezentate revine autorilor.
• Au prioritare lucrările trimise spre publicare însoțite de o recomandare semnată de un personalitate științifică recunoscută în domeniul, privind calitatea conținutului științific și a prezentării, nivelul de interes pentru cititori, originalitatea lucrărilor.
• Redacția își rezervă dreptul de a nu publica materialele pe care le consideră necorespunzătoare. Manuscrisele nepublicate nu se înapoiază autorilor.

REGULI DE REDACTARE A ARTICOLELOR

• Articolele vor avea între minim 2 pagini și maxim 6 pagini, vor fi tehnoredate de pe calculator, folosind editorul de texte MICROSOFT WORD sub WINDOWS, cu caracter Times New Roman, corp de literă 11, și vor fi trimise pe dischetă însoțite de un exemplar tipărit. Desenele și imagile vor fi în alb-negru, într-un fișier separat pe dischetă. Fișierele vor fi verificate înainte de a fi trimise la redacție cu un program antivirus recent pentru a se detecta eventual fișiere infectate cu viruși.
• Articolele trebuie să fie însoțite de rezumat de maximum 100 cuvinte, în limbile română și engleză și de o listă de cuvinte cheie.
• Autorii vor indica numele și prenumele, titlurile științifice, funcția, locul de muncă, adresa și telefonul și vor anexa o scurtă prezentare a activității profesionale personale (maxim 10 rânduri).
• Nu se admit prescurtări, în afară de cele recunoscute și de largă utilizare.
• Scrierea și utilizarea denumirilor și a simbolurilor mărimilor și unităților de măsură precum și a multiplilor și submultiplilor acestora și, de asemenea, a valorilor mărimilor fizice se vor face în conformitate cu recomandările BRML publicate în revista „METROLOGIE” nr. 3-4 / 2001.
• Indicarea materialului bibliografic se va face complet: autor, titlu în limba originală, ediția, numărul volumului, locul publicării, editura, anul apariției, iar la reviste se va indica, în plus, numărul și anul publicării, pagina inițială și cea finală.
• Referințele bibliografice vor fi marcate în text prin indicarea numărului de ordine al lucrării, încadrat în paranteze drepte.

Pentru detalii suplimentare contactați redacția, la adresa menționată pe pagina 1.